Storage Tank RBI

The process industry is faced with increasing economic pressure and a no-tolerance attitude toward environmental accidents. The presence of a large number of storage tanks containing dangerous products constitutes one of the major risks of pollution. Storage tanks are continuously subjected to environmental effects, unavoidably leading to degradation under the form of a corrosion attack. This degradation causes a gradual loss of material and accumulates over the years, ultimately resulting in complete wall penetration and leak formation. Through a leak, the contained product will pollute soil and groundwater. RBI is well established and widely used in the oil and gas, refining, petrochemical and chemical industries. Internal examination of storage tanks, especially of the floor, is difficult and costly. Prioritizing inspections and repair based on risk can improve reliability by focusing inspection resources on those damage mechanisms driving the tank's risk.

Storage Tank RBI

A criticality assessment was conducted on a Storage Tank Farm in Seabrook Texas. The project involved an RBI assessment of 14 pressure vessels, 2 heat exchangers, 108 storage tanks, 888 piping circuits and 187 relief devices. A total of 17 items were found to have a "High" rating. The distribution of overall criticality ratings for the items in scope is summarized as follows.

DISTRIBUTION OF CRITICALITY RANKINGS
Overall Criticality Category
Equipment Type Equipment Count Component Count High M-H Medium Low
Piping Circuits888888011794677
Fixed Equipment Components124340156354208
Relief Devices1871872429647
Totals1,1991,41517222244932

Seventeen items were in the "High" Criticality category due to a combination of internal and external corrosion. The relief devices are High because of the deterioration potential based in part on last inspection date

Risk Distribution by Damage Mechanism

The following shows the Criticality Matrix for this facility with the number of equipment item components in each block. These represent all of the equipment types included in the study. The Probability of Failure Rankings are on the vertical axis and range from "1" (Very High Probability) to "5" (Very Low Probability). The Consequence of Failure Rankings are on the horizontal axis and range from "A" (Catastrophic) to "E" (Minor).

Combined Risk Distribution
I.C Risk Distribution
E.C Risk Distribution
Environmental Cracking Distribution
Other Damage Mechanism Distribution

Probability of Failure

The following figure separates the probability of failure count by internal corrosion and external corrosion, stress corrosion cracking and other mechanisms. Internal and external corrosion and SCC are the major factors contributing to the higher probabilities.

Probability of Failure by Damage Mechanism

Probability of Failure by Damage Mechanism

Probability Analysis for Pressure Relief Valves

The Criticality Rating considers both the probability and consequence of failure categories. The probability of failure is based on the failure mode "failure to relieve at design pressure", which covers the most important failure scenario. The probability category is established by considering the potential for internal corrosion, fouling and plugging. Credit is given when a rupture disk protects a relief valve. Interviews with operations personnel and reviews of the shop test reports are used to determine the deterioration potential. The potential and the time interval since the last shop overhaul are used to determine a deterioration factor, which is converted directly into a probability of failure category. This study revealed that many of the pressure relief devices were in "like new" (4) condition.

The Probability of Failure Rankings are based on valve history, length of time in service, and the potential for fouling or plugging.

The Consequence Rankings are based on the highest consequence of failure of the protected equipment items.

Relief Device Risk Distribution

Consequence of Failure

Unit Rank Equipment ID Component Reason for HIGH
Bay 19131-19-050-T-050-01Storage Tank ShellExternal Corrosion
Bay 19231-19-050-T-050-01RoofExternal Corrosion
Bay 19331-19-052-T-052-01Storage Tank ShellExternal Corrosion
Bay 19431-19-052-T-052-01RoofExternal Corrosion
Bay 17531-17-098-T-098-01Storage Tank ShellExternal Corrosion
Bay 04631-04-031-T-031-01Storage Tank ShellExternal Corrosion
Bay 04731-04-030-T-030-01Storage Tank ShellExternal Corrosion
Bay 17831-17-096-T-096-01Storage Tank ShellExternal Corrosion

For all components in the study, the consequence analysis was modeled as a release of a fluid from the pressure-containing boundary to the atmosphere. The consequence analysis utilized models that consider flammable, toxic, inert and reactive consequences. The Consequence Ranking Distribution for all components is shown graphically in the following Figure.

Consequence of Failure Distribution

Inspection Work Plan Summary

Inspection plans were generated for all equipment items in the study. Each plan included the Equipment ID, Inspection Priority Ranking, all potential damage mechanisms associated with each item and the suggested inspection method to address each damage mechanism. The following represents the proposed inspection work plan for the highest risk items found in the study. The next step in managing the RBI program in this unit is to follow through the recommended inspections. Then for items found to be in the Higher Criticality Categories, establish a plan for managing them. Some of the items can be addressed very quickly; others have to wait until the next shutdown. The table below lists the HIGH Criticality items, the mechanism responsible for the HIGH Risk and a general inspection recommendation.

Unit Rank Equipment ID Component Reason for HIGH
Bay 19131-19-050-T-050-01Storage Tank ShellExternal Corrosion
Bay 19231-19-050-T-050-01RoofExternal Corrosion
Bay 19331-19-052-T-052-01Storage Tank ShellExternal Corrosion
Bay 19431-19-052-T-052-01RoofExternal Corrosion
Bay 17531-17-098-T-098-01Storage Tank ShellExternal Corrosion
Bay 04631-04-031-T-031-01Storage Tank ShellExternal Corrosion
Bay 04731-04-030-T-030-01Storage Tank ShellExternal Corrosion
Bay 17831-17-096-T-096-01Storage Tank ShellExternal Corrosion

Risk Reduction

The following shows the projected risk reduction in dollars per year as a result of focusing inspections on the higher criticality items. For this analysis, it was assumed that the risk reduction would result from addressing the highest 8 (1%) of the fixed equipment items in the study, resulting in a 90% risk reduction of nearly $2,500,000 per year.

Risk Reduction

Conclusion

The above provides insight into the results of an RBI study across a number of fixed equipment asset families, relief devices and piping circuits. In addition to the significant risk reduction delivered ($2.5M annually) from an RBI program, cost savings can be realized by a factor of 50% for vessel inspections and up to 75% for piping inspections. Typical turnarounds can be optimized and internal inspections of less critical assets extended allowing refiners to realize millions in USD in T/A savings.

Case Study Inquiry

Related Services

Risk Based Inspection (RBI) Implementation and Planning

AOC has delivered thousands of sustainable Risk Based Inspection (RBI) programs earning the trust of owner operators.

Damage Mechanism Review / Corrosion Study

One of the most important steps in an RBI project is the corrosion study or damage mechanism review.

Related Training

RBI/MI Overview

What is Risk Based Inspection?

API 580 RBI Overview

What impact does Risk Based Inspection (RBI) have on my organization?

API 580 Training

Is your Risk Based Inspection (RBI) program aligned with the API 580 Recommended Practice? Are you ready for certification?

API 581 Overview

What's actually going on inside all of that fancy software? An introduction to the API 581 methodology.

Related Knowledge

Guidelines for Providing Process Conditions for RBI - Part 6: HTHA

A simple screening to determine HTHA susceptibility and factors to consider when more data is required.

Insights on Improving Inspection Effectiveness

Since the evaluation of inspection effectiveness for RBI can be so subjective, following these suggestions can greatly improve the process.

Guidelines for Providing Process Conditions for RBI - Part 5: Low Temp

This article suggests additional factors to consider when providing process conditions for equipment exposed to low temperatures.

Qualitative Risk Assessment of a Commercial Refrigeration System

A case study presenting the methods used to calculate qualitative risk for a critical refrigeration system and the results of the assessment.

Managing Reliability of Ethane Crackers using DMR, RBI, and IOWs

How RBI, DMR, and IOW programs can be used to manage reliability of Ethane crackers.

Guidelines for Providing Process Conditions for RBI - Part 4: High Temp

This article suggests additional factors to consider when calculating probablity of failure for equipment exposed to high temperatures.

Guidelines for Providing Process Conditions for RBI - Part 3: Fluids

This article offers guidance on the selection of a representative fluid for use in your RBI consequence evaluation.

Steam System Risk Mitigation Using Risk Based Inspection

The benefits of utilizing risk-based methodologies for the inspection programs of often overlooked utilities systems

5 Things to Consider When Choosing Your API Training Provider

Not all vendors are created equal. Some up-front research can go a long way toward a high-quality learning experience.

Goal: 100% API 580 Certified

A long-standing vision of AOC, we are well on our way to meeting the goal of having 100% of our RBI staff certified to API 580.